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Fig. 3. Zo versus W/H for various values of B/H.

percent with that of Cohn [10]. For ¢ =9.6 the results were compared
with that reported by Yamashita [7] who has carried out his calcu-
lations for sapphire (e, =9.9) using variational methods. Yamashita’s
results were higher by a maximum of 3 percent due to higher dielec-
tric constant of sapphire. Using GE 635 computer, 3.6-s computation
time is required to obtain one of the curves in Fig. 3.
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Spectral-Domain Approach for Calculating the
Dispersion Characteristics of Microstrip Lines

TATSUO ITOH anp RAJ MITTRA

Abstract—The boundary value problem associated with the open
microstrip line structure is formulated in terms of a rigorous, hybird-
mode representation. The resulting equations are subsequently
transformed, via the application of Galerkin’s method in the spectral
domain, to yield a characteristic equation for the dispersion proper-
ties of the open microstrip line.

Numerical results are included for several different structural
parameters. These are compared with other available data and with
some experimental measurements.

INTRODUCTION

Because microwave integrated circuits are being used at higher
frequencies, it is often necessary to predict the dispersion character-
istics of microstrip lines and similar configurations. However, only
very recently has the hybrid-mode analysis been applied for rigorous
formulation of the dispersion problem for both the shileded [1}-[3]
and open versions [4] of the microstrip lines.

The method followed by Denlinger [4] for analyzing the open
microstrip line is critically dependent on the forms of the distribution
one assumes, for the two current components on the center strip of
the line, in the process of solving for the unknown amplitude of
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these distributions. In'this short paper, a new method is presented
for circumventing the preceding difficulty and systematically solving
for the current components to the desired degree of accuracy. The
method is basically a modification of Galerkin's approach adapted
for application in the Fourier transform, or spectral domain. One of
the advantages of this approach is that it is numerically more efficient
than the conventional methods that work directly in the space do-
main. This is due primarily to the fact that the process of Fourier
transformation of the coupled integral equations in the space domain
yields a pair of algebraic equations in the transform domain that are
relatively easier to handle. Another important advantage is that the
Green’s function takes a much simpler form in the transform domain,
as compared to the space domain where no convenient form of the
Green'’s function is known to exist. Finally, the method itself is quite
general, and hence, is applicable to a number of other structures, e.g.,
the slot line [5].

FORMULATION OF THE PROBLEM

Fig. 1 shows the cross section of the open microstrip line. The
structure is assumed to be uniform and infinite in both x and 2z direc-
tions. The infinitely thin strip and the ground plane are perfect con-
ductors. It is also assumed that the substrate material is lossless and
its relative permittivity and permeability are e and u., respectively.

It is well known that the hybrid-field components can be expressed
in terms of a superposition of the TE and TM fields, which are in turn
derivable from the scalar potentials ¢ and ¢®, For instance

k2 — 8°
=J

B 1//1 © (x) y) eibe

kl2_ 2

B iz, yye-se )

Hzi=j

by = wv/eip = wv/epreouo
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where 8 is the unknown propagation constant and « is the operating
frequency. The superscripts (¢) and (%) are associated with the TM
and TE types of fields, respectively. The subscripts ¢=1, 2 serve to
designate the regions 1 (substrate) or 2 (air). All the other field com-
ponents are also easily derivable.

As a first step, we define the Fourier transforms of the scalar
potentials as

709 = [ wowpemds, =12
o p=coth 3)

and apply the continuity conditions to the field components in the
Fourier transform domain. When this is done, the transforms of
scalar potentials at the interface y =d are expressed in terms of the
transform of unknown current components on the steip J,(e) and
J.(e). For instance,
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Note that by, by, etc., and F, are functions of the propagation con-
stant 8 which is as yet unknown.

Up to this stage, the formulation presented herein is basically the
same as that found in Denlinger {4]. The essential difference in the
present method is in the application of the two final boundary condi-
tions on the strip, which requires

Eolr,d) =0, |x| <w/2 (62)

d
% Hae,d) =0,
- 2(x, d)

Rather than applying (6) in the space domain (as in Denlinger [4]),
we impose this condition in the Fourier transform domain instead.
As a first step we let

| 2| < w/2. (6b)
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where # and v are unknowns. Taking the Fourier transform of E.,
and (d/dy)H.,s, |x| < = given by (6) and (7) and using the expressions
given by (1) and (4) on the left-hand sides of the transform of (6)
plus (7), we finally obtain the following coupled equations for the
two current components
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Note that (8) is a set of two algebraic equations, in contrast to
the coupled integral equations employed by Denlinger in the space-
domain analysis. As alluded to earlier, this is the principal advantage
of the present method of formulation.

METHOD OF SOLUTION

In this section we present an efficient method for solving the
coupled equations (8). The method is essentially Galerkin’s procedure
applied in the Fourier transform domain. It is first noted that the
two equations in (8) actually contain six unknowns. However, by
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using certain propertles of these functions, we can eliminate four of
the unknowns, viz., U1, Us, V1, and Vs, from these equations.

To this end, let us first expand the unknown current components
J. and J, in terms of known basis functions J, and J.n as follows:

jz(a) = Z an.tn(a) (93-)
n=1
j z(a) = i dnf zn(a)- (9b)

n=1

The basis functions J,, and J,, must be chosen such that their
inverse Fourier transforms are nonzero only on the strip |x| <w/2.
After substituting (9) into (8) we take the inner products with the
basis functions J.m and J.m for different values of 7. This yields the
matrix equation
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sl n=1
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One can verify via an application of Parseval’s theorem that the right-
hand sides of (8) are indeed eliminated by this procedure. Using this
theorem we can show, for instance, that

[ Tan(@|0:@) + Oxed] de

2,rf_ T )[ (k -

The preceding relation is true since the current J.m(x), the inverse
transform of J..(a), and E.:(x, d) are nonzero in the complementary
regions of x.

The next step is to solve the simultaneous equations (10) for the
propagation constant @8, by setting the determinant of this set of
equations equal to zero and seeking the root of the resulting
equation. The propagation constant 8 is calculated for each frequency
« to obtain the dispersion relation for the microstrip line structure
of Fig, 1.

As pointed out earlier, the numerical results obtained by
Denlinger are critically dependent on the choice of the assumed
forms of current components on the strip, because in his method the
integral equations are solved for the amplitudes of the current com-
ponents with assumed distribution. However, in the present method
the solution can be systematically improved by increasing the number
of basis functions and solving a larger size matrix.

5 B d)] dx=0.

NUMERICAL PROCEDURE AND RESULTS

The choice of the basis functions is rather arbitrary as long as they
satisfy the required conditions that they are zero in the appropriate
range and possess certain symmetry properties. For the dominant
mode, it is easily seen that J, is even-symmetric with respect to the y
axis while J, is odd-symmetric. We will first show how the solution of
(10) improves with the increasing size of the matrix associated with
(10).

Let us choose the set of functions J,1, J»2, Je1, and Jzz as shown in
Fig. 2. Jzn and J., for #223 can be defined in a similar manner. The
Fourier transforms of these functions are easily obtained. These four
functions are used in (11) to compute the matrix elements K,,\'D,
Kunh®, Ko, and K, for a given frequency. A dispersion
relation has been calculated for three choices of matrix size, i.e.:
1) N=1, M=0; 2) N=M=1; and 3) N=M=2. In the first case,
only the axial component J,; of the strip current is retained, and this
case may be called the zero-order approximation. The second case
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Fig. 3. Effective dielectric constant versus frequency.

(the first-order approximation) uses J, and J,;, while the third case
is the second-order approximation with J,1, Jss, Ja1, and Jz retained.

Fig. 3 shows the effective dielectric constant computed by the
present method with different order of approximation. The effective
dielectric constant is defined by

AN2 5 2

«=(3) - @)
where A, is the guide wavelength. In Fig. 3 the results computed by
Denlinger [4] are also given for comparison. It is clear that both the
zero- and the second-order approximations agree quite well with
Denlinger’s results. Some test calculations for the third-order approx-
imation show that the results fall between the zero- and the second-
order curves,

The following explanation may be offered as to why the first-order
approximation does not give good results. An examination of J,; and
J:2 shows that they are good approximations for the z component of
the strip current in the dc limit. Recall that in this approximation the
effective dielectric constant is computed from the knowledge of the
line capacitance only. However, the assumed form of J, is far from
the actual distribution of the x-directed current component on the
strip, because its true value actually goes to zero smoothly as one
approaches the edge and the center of the strip. It is evident that on
the basis of this criterion J,» represents a much better approximation
for the x component of the strip current and hence its inclusion results
in better accuracy for the dispersion curves.

Fig. 4 shows the relative guide wavelength for several values of
e The dispersion curves for the closed microstrip line are also in-
cluded for comparison [2]. The closed microstrip line is placed in a
rectangular shield case with a side dimension of 12.7 mm. The experi-
mental results found in [2] are also reproduced. In Fig. 4 only the
results for the zero-order approximation are plotted to retain the clar-
ity of the figure. The second-order results fall between the zero-order
results and the dispersion curves for the closed microstrip line. For
the reasons given earlier, the first-order solution again yields poor
approximation, giving values larger than the closed microstrip results.
It should also be mentioned that the results for the zero-frequency
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Fig. 4. Normalized guide wavelength versus frequency.

limit agree well with the quasi-TEM solution, except in the case of
the first-order approximation.

Finally, it is important to quote typical computation times for
this method. The computation time on the CDC G-20 computer (ap-
proximately seven to ten times slower than the IBM 360/75) is about
30 s for the zero-order approximation, 120 s for the first-order, and
500 s for the second-order approximation. These times are typical for
one point on the curve when the matrix elements given by (11) are
accurate to three digits or better.

CONCLUSIONS

A numerical method has been presented for obtaining the disper-
sion relation of the open microstrip lines. The method is based upon
application of Galerkin’s procedure in the spectral domain. The ac-
curacy of the numerical results obtained by the present method can
be improved in a systematic manner by increasing the size of the
matrix associated with the characteristic equation. Numerical results
reported in this paper have been compared with other available data
and experimental results.
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Ridged Waveguide for Planar Microwave Circuits
ROLF O. E. LAGERLOF

Abstract—A TE-mode planar transmission line is analyzed. It has
a cross section as a ridged waveguide where the ridges are very thin.
It is easily fabricated by photoetching of copper-clad dielectric
boards, but can also be made without dielectrics for low-loss applica-
tions. Thus, it can be integrated together with other planar trans-
mission lines like, for example, striplines. Besides the simplicity in
feeding by stripline, the guide can be made smaller than an ordinary
rectangular waveguide. It has applications in filters, resonators,
balun-transitions, antenna feeds, etc. The characteristic impedance
of the transmission line and its free-space cutoff wavelength are cal-
culated and given in a diagram.
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Fig. 1. Practical design of the proposed shielded slotline. (a) Etched copper-
clad dielectric boards. (b) Nonsuspended metal ridges in empty guides.

Fig. 2. Cavity-backed slot antenna from which the theory is derived.

In modern microwave circuitry, planar transmission-line tech-
nique has assumed an increasing importance. The main reason has
been light weight, ease of manufacture, and economy. The two prin-
cipal planar transmission-line types are the stripline and the micro-
strip. Recently their “dual forms” have been introduced. Cohn et al.
[1]-[4] have examined open types of slot lines: a slot in a metal
screen with a dielectric substrate on one or both sides of the screen.
More or less shielded forms of the slot line have also been investigated
[5], [6]. These slot-line types are not only used as transmission lines
but also as components in filters, couplers, and ferrite devices [7}-[9].
The completely shielded slot line is closely related to ridged wave-
guides which are well understood [10]-[12]. However, in the slot-line
case, where the ridges are very thin, design information is rare. The
purpose of this short paper is to give such information.

The cross section of the shielded slot line is shown in Fig. 1 The
ridges or fins form a slot in which the electric field is concentrated.
The electric field is uneffected by an electric wall symmetrically
placed along the slot and perpendicular to the ridges. Thus there exist
two types, the double- and the single-ridged waveguide, with essen-
tially the same characteristics. It is indicated in Fig. 1(a) how shielded
slot lines can be fabricated by etching a slot in a copper-clad dielectric
board (a stripline board) which together with a nonclad board is
placed in a channel milled in a metal block. Precautions shall be
taken to ensure good electric contact between the foil ridges and the
channel wall, for instance by conductive glue. The ridges can also be
made nonsuspended for low-loss application as shown in Fig. 1(b).

The theory for the shielded slot line was achieved as a by-product
of an analysis of cavity-backed slot antennas [13]. The cavity part
of the antenna admittance at the slot center in Fig. 2 is purely imag-
inary for a loss-less cavity, and its susceptance is given by -
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