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percent withthatof Cohn [10]. Fore. =9.6the results werecompared
with that reported by Yamashita [7] who has carried out his calcu-
lations for sapphire (6,=9.9) using variational methods. Yamashita’s

results were higher bya maximum of 3 percent due to higher dielec-

tric constant of sapphire. Using GE 635 computer, 3.6-s computation

time isrequired toobtain one of thecurves in Fig. 3.

Spectral-Domain Approach for Calculating the

Dispersion Characteristics of Microstrip Lines

TATSUO ITOH AND RAJ M ITTRA

Ab.sfract-The boundary value problem associated with the open
microstrip line structure is formulated in terms of a rigorous, hybird-

mode representation. The resulting equations are subsequently

transformed, via the application of Galerkin’s method in the spectral
domain, to yield a characteristic equation for the dispersion proper-
ties of the open microstrip lime.

Numericsf results are included for several d~erent structural

parameters. These are compared with other available data and with
some experimental measurements.

INTRODUCTION

Because microwave integrated circuits are being used at higher

frequencies, it is often necessary to predict the dispersion character-
istics of microstrip lines and similar configurations. However, only

very recently has the hybrid-mode analysis been applied for rigorous
formulation of the dispersion problem for both the shileded [1]- [3 ]
and open versions [4] of the microstrip lines.

The method followed by Denlinger [4] for analyzing the open

microstrip line is critically dependent on the forms of the distribution
one assumes, for the two current components on the center strip of
the line, in the process oi solving for the unknown amplitude of
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Fig. 1, Microstrip line.

these distributions. In this short DaDer. a new method is presented
for circumventing the preceding di%i&dty and systematically solving

for the current components to the desired degree of accuracy. The

method is basically a modification of Galerkin’s approach adapted
forapplication inthe Fourier transform, or spectral domain. One of

the advantages of this approach is that it is numerically more efficient

than the conventional methods that work directly in the space do-

main. This is due primarily to the fact that the process of Fourier

transformation of the coupled integral equations in the space domain
yields a pair of algebraic equations in the transform domain that are
relatively easier to handle. Another important advantage is that the

Green’s function takes a much simpler form in the transform domain,
as compared to the space domain where no convenient form of the

Green’s function is known to exist. Finally, the method itself is quite
general, and hence, is applicable to a number of other structures, e.g.,
the slot line [5].

FORMULATION OF THE PROBLEM

Fig. 1 shows the cross section of the open microstrip line. The

structure is assumed to be uniform and infinite in both x and z direc-

tions. The infinitely thin strip and the ground plane are perfect con-

ductors. It is also assumed that the substrate material is lossless and

its relative permittivity and permeability are c, and P,, respectively.
It is well known that the hybrid-field components can be expressed

in terms of a superposition of the TE and TM fields, which are in turn
derivable from the scalar potentials $(e) and @, For instance

(1)

where @is the unknown propagation constant and u is the operating
frequency. The superscripts (e) and (?z) are associated with the TM

and TE types of fields, respectively. The subscripts i = 1, 2 serve to
designate the regions 1 (substrate) or 2 (air). All the other field com-

ponents are also easily derivable.
As a first step, we define the Fourier transforms of the scalar

potentials as

.rF,%, Y) = _m‘A(P)(z, y)e+~a~ dx, ;= 1,2

@=eorh (3)

and apply the continuity conditions to the field components in the
Fourier transform domain. When this is done, the transforms of

scalar potentials at the interface y = d are expressed in terms of the
transform of unknown “current components on the strip ~~ (a) and
~,(a). For instance,

+ & h.?.(a)\ e--fj(rr-’) (4a)

H
@W)(CY,d) = + Flbjl + — 1b,,.7,(CI)

k,’ – (3’

where -yt=a3+62-k.z, and

(5a)

[
cLKoyl 72 ktz – L32

b,l = — ;+.,——
P k,z – 1%

coth yld 1 (SC)

det = bllbt~ – blz.bzl (5d)

F, =
WWWY1

tanh .{ Id.
j(k,2 – 62)

(Se)

Note that b,,, b,,, etc., and F1 are functions of the propagation con-
stant ~ which is as yet unknown.

Up to this stage, the formulation presented herein is basically the

same as that found in Denlinger [4]. The essential difference in the

present method is in the application of the two final boundary condi-

tions on the strip, which requires

E.,(x, d) = O, I x I < w/2 (6a)

~ H.2(x, d) = O,
dy

1X1 <w/2. (6b)

Rather than applying (6) in the space domain (as in Denlinger [4]),

we impose this condition in the Fourier transform domain instead.

As a first step we let

k,2 – &
E,.z(x, d) = j —— u(x), lxl>w/2 (7a)

P

kz.~– (32
~ Hzz(xj d) = j —— v(.x), !*I >w/2.
dy P

(7b)

where u and v are unknowns. Taking the Fourier transform of I&,
and (d/dy)H,Z, ]x I < cc given by (6) and (7) and using the expressions

given by (1) and (4) on the left-hand sides of the transform of (6)

plus (7), we finally obtain the following coupled equations for the
two current components

G,,(a, 13)~z(a) + G12(rt, /3)]s(4 = u,(a) + ~z(a) (8a)

G2,(cY, P)].(cY) + G22(a, 13)~,(a) = r,(a) + ~z(a) (8b)

where

J

-w/z
o,(a) = W(X)e~azdx

-.
.

~,(a) = ~ u(x)eJaZ dx
“>/2

J

—w/2

~~(a) = v(x)efcCdx
-.
.

V,(a) = f,,,,: (x)e’az dx

and

[
d

GII = & F1bn + —— b,,
k,z – 62 1

~zbll
GM = —

det “

Note that (8) is a set of two algebraic equations, in contrast to

the coupled integral equations employed by Denlinger in the space-
domain analysis. As alluded to earlier, this is the principal advantage

of the present method of formulation.

METHOD OF SOLUTION

In this section we present an efficient method for solving the

coupled equations (8). The method is essentially Galerkin’s procedure

applied in the Fourier transform domain. It is first noted that the

two equations in (8) actually contain six unknowns. However, by
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using certain properties of these functions, we can eliminate four of

the unknowns, viz., T71, ~~, VI, and ~s, from these equations.

To this end, let us first expand the unknown cur~ent components

J* and IZ in terms of known basis functions ~~~ and Jzfi as follows:

.7=(C2)= 5CAA%) (9a)
n=l

l,(a) =5%.U2). (9b)
n--l

The basis functions J.n and .7=. must be chosen such that their
inverse Fourier transforms are nonzero only on the strip 1x1 <w/2.

After substituting (9) into (8) we take the inner products with the

basis functions J.m and ~~~ for different values of m. This yielcfs the

matrix equation

~~mn(l,l).n +fi~mn(l,%)~n=O, fi~=l,z,...,~ (lOa)

m-l n=l

~Kmn(%,1jcn+~Kmn(2sa)&=0, m=l,2,.. .,M (lob)
n-l n-1

where

Kmn(l,l) = J‘LA-M(a,19~zn(4 ~ (ha)
—.

J
.

Kmn(l’Z) = ~m(a)GI,(r,, P)~m(a) da (llb)
. .

Kmm(W = s“.7~(a)G21(a, @Yg*(a) da (llC)
-.

Kmn(2,2) =

J
‘.7m(a)G,&Y,(3)]m(a) da (lId)

—*

One can verify via an application of Parseval’s theorem that the right-

hand sides of (8)areindeed eliminated bythisprocedure. Using this

theorem we can show, for instance, that

The preceding relation is true since the current J,~(x), the inverse

transform of ~m(a), and E,z($, d) arenonzero in the complementary
regions of z.

Thenext step istosolve the simultaneous equations (10) for the

propagation constant & by setting the determinant of this set of

equations equal to zero and seeking the root of the resulting

equation, The propagation constant p is calculated for each frequency
u to obtain the dispersion relation for the microstrip line structure

of Fig. 1.
As pointed out earlier, the numerical results obtained by

Denlinger are critically dependent on the choice of the assumed
forms of current components on the strip, because in his method the

integral equations are solved for the amplitudes of the current com-

ponents with assumed distribution. However, in the present method
the solution can be systematically improved by increasing the number

of basis functions and solvinga larger size matrix.

NUMERICAL PROCEDURE AND RESULTS

The choice of the basis functions is rather arbitrary as long as they

satisfy the required conditions that they are zero in the appropriate

range and possess certain symmetry properties. For the dominant

mode, itiseasily seen that J.iseven-symmetric with respect to they

axis while .Tais odd-symmetric. Wewillfirst show howthe solution of

(10) improves with the increasing size of the matrix associated with

(lo).

Let us choose the set of functio& J.1, J,,, Js,, and Jz, as shown in
Fig. 2. J=nand Jznforn>3can redefined ina similar manner. The

Fourier transforms of these functions are easily obtained. These four

functions are used in (11) to compute the matrix elements K~n<l,lJ,
Kmn(l,a), Kmn(LO, and Kmn(Z,z) for a given frequency. A dispersion

relation has been calculated for three choices of matrix size, i.e.:

1) N=l, .M=O; 2) N=M=l; and3) N=M=2. Inthe first case,
only the axial component J.lof the strip current is retained, and this
case may be called the zero-order approximation. The second case

JZ2 JX2

Fig. 2. Basis functions for JZ and y..

I
.sr = 11.7 —- DENUNGER [4]
/+= 1.0 –-—ZERO ORDER

w =3.17mm — FIRST ORDER

12.0 d =3.04mm ---- SECONOORDER

110 -

100 -

90 -

I I i t 1 1 I 1 ! I [
o 10 20

FREQUENCY (GHz)

Fig. 3. Effective dielectric constant versus frequency.

(the first-order approximation) uses JA and J~I, while the third case
isthesecond-order approximation with J.1, J.!, JZI, and~zz retained.

Fig. 3 shows the effective dielectric constant computed by the
present method with different order of approximation. The effective

dielectric constant is defined by

‘“= (+)2=(32
where ~ois the guide wavelength. In Fig. 3 theresults computed by
Denlinger [4]arealso given forcomparison. Itisclear that both the
zero- and the second-order approximations agree quite well with
Denlinger’s results. Some test calculations for the third-order approx-
imation show that the results fall between the zero- and the second-

order curves,
The following explanation may be offered as to why the first-order

approximation does not give good results. An examination of J.l and
Jtishows that they are good approximations forthez component of
the strip current in the dc limit. Recall that in this approximation the

effective dielectric constant is computed from the knowledge of the
line capacitance only. However, theassumed form of J., is far from
the actual distribution of the z-directed current component on the
strip, because its true value actually goes to zero smoothly as one

approa~hes the edge and the center of the strip. It is evident that on
the ba.wof this criterion J..zrepresents a much better approximation
for the x component of the strip current and hence its inclusion results
in better accuracy for the dispersion curves.

Fig. 4 shows the relative guide wavelength forseveral values of
e,. The dispersion curves for the closed microstrip line are also in-

cluded for comparison [2]. The closed microstrip line is placed in a
rectangular shield case with aside dimension of 12.7 mm. Theexperi-

mental results found in [2] are also reproduced. In Fig. 4 only the
results for the zero-order approximation are plotted to retain the clar-
ityof the figure. Thesecond-order results fall between the zero-order
results and the dispersion curves for the closed microstrip line. For

the reasons given earlier, the first-order solution again yields poor

approximation, giving values larger than the closed microstrip results.
It should also be mentioned that theresults forthe zero-frequency



SHORT PAPERS 499

0.7.-------------
~r =2.65

. ------- . -- —-------------

0.6 : @r =4.2------------- -------------------------

0.5 -

04 ~---*----* - *
er =8.875

u.-- ------------------------

0.3 -
------------------------- _____

0,2 -

~.1.27mm —ZERO OROER
o.I d= 1.27mm ---- CLOSEO MICROSTRIP [2j

xxx opEN MlcRosTRlp EXperiment [2]

o I 1 1
0 10 20 30

FREQUENCY (GHz)

Fig.4. Normalized guide wavelength versus frequency.

limit agree well with thequasi-TEM solution, except inthe case of

the first-order approximation.
Finally, it is important to quote typical computation times for

this method. The computation time on the CDC G-20 computer (ap-
proximately seven to ten times slower than the IBM 360/75) is about

30sforthe zero-order approximation, 120s for the first-order, and
500s for the second-order approximation. These times are typical for

one point on the curve when the matrix elements given by (11) are
accurate to three digits or better.

CONCLUSIONS

A numerical method has been presented for obtaining the disper-
sion relation of the open microstrip lines. The method is based upon

application of Galerkin’s procedure in the spectral domain. The ac-
curacyof the numerical results obtained by the present method can

be improved in a systematic manner by increasing the size of the
matrix associated with the characteristic equation. Numerical results
reported in this paper have been compared with other available data

and experimental results.
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Ridged Waveguide for Planar Microwave Circuits

ROLF O. E. LAGERL~F

Afrsfracf-A TE-mode planar transmission line is analyzed. It has

a cross section as a ridged waveguide where the ridges are very tfdn.

It is easily fabricated by photoetchmg of copper-clad dielectric
boards, but can also be made without dielectrics for low-loss applica-
tions. Thus, it can be integrated together with other planar trans-
mission limes like, for example, stri@ines. Besides the simplicity in
feeding by stripline, the guide can be made smaller than an ordinary
rectangular waveguide. It has applications in filters, resonators,
balnn-transitions, antenna f eeds, etc. The characteristic impedance
of the transmission line and its free-space cutoff wavelength are cal-
culated and given in a diagram.

Manuscript received October 26, 1972; revised February 28, 1973.
The author is with the Division of Network Theory, Chalmers University of
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Fig. 1. Practical design of the proposed shielded slo~ine. (a) Etched copper-
clad dielectric boards. (b) Nonsuspended metal r,dges in empty guides.
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Fig. 2. Cavity-backed slot antenna from which the theory is derived.

In modern microwave circuitry, planar transmission-line tech-

nique has assumed an increasing importance. The main reason has

been light weight, ease of manufacture, and economy. The two prin-
cipal planqr transmission-line types are the stripline and the micro-
strip. Recently their “dual forms” have been introduced. Cohn et al.

[1]- [4] have examined open types of slot lines: a slot in a metal

screen with a dielectric substrate on one or both sides of the screen.
More or less shielded forms of the slot line have also been investigated
[5], [6]. These slot-line types are not only used as transmission lines

but also as components in filters, couplers, and ferrite devices [7]- [9 ],
The completely shielded slot line is closely related to ridged wave-

guides which are well understood [10 ]– [12]. However, in the slot-line

case, where the ridges are very thin, design information is rare. The
purpose of this short paper is to give such information.

The cross section of the shielded slot line is shown in Fig. 1. The

ridges or fins form a slot in which the electric field is concentrated.

The electric field is unaffected by an electric wall symmetrically

placed along the slot and perpendicular to the ridges. Thus there exist
two types, the double- and the single-ridged waveguide, with essen-
tially the same characteristics. It is indicated in Fig. 1 (a) how shielded
slot lines can be fabricated by etching a slot in a copper-clad dielectric

board (a stripline board) which together with a nonclad board is
placed in a channel milled in a metal block. Precautions shall be

taken to ensure good electric contact between the foil ridges and the

channel wall, for instance by conductive glue. The ridges can also be
made nonsuspended for low-loss application as shown in Fig. 1 (b).

The theory for the shielded slot line was achieved as a by-product

of an analysis of cavity-backed slot antennas [13]. The cavity part

of the antenna admittance at the slot center in Fig. 2 is purely inlag-
inary for a loss-less cavity, and its susceptance is given by


